
contact_map Documentation
Release 0.3.1

David W.H. Swenson

Mar 17, 2019

Contents

1 Installation 3

2 Examples 5

3 API Reference 19

Python Module Index 41

i

ii

contact_map Documentation, Release 0.3.1

This package provides tools for analyzing and exploring contacts (residue-residue and atom-atom) from a trajectory
generated by molecular dynamics. It builds on the excellent tools provided by MDTraj.

Contacts can be an important tool for defining (meta)stable states in processes involving biomolecules. For example,
an analysis of contacts can be particularly useful when defining bound states during a binding processes between
proteins, DNA, and small molecules (such as potential drugs).

The contacts analyzed by contact_map can be either intermolecular or intramolecular, and can be analyzed on a
residue-residue basis or an atom-atom basis.

This package makes it very easy to answer questions like:

• What contacts are present in a trajectory?

• Which contacts are most common in a trajectory?

• What is the difference between the frequency of contacts in one trajectory and another? (Or with a specific
frame, such as a PDB entry.)

• For a particular residue-residue contact pair of interest, which atoms are most frequently in contact?

It also facilitates visualization of the contact matrix, with colors representing the fraction of trajectory time that the
contact was present.

Contents 1

http://mdtraj.org

contact_map Documentation, Release 0.3.1

2 Contents

CHAPTER 1

Installation

If you’re just planning to use the code, you’ll want to perform a basic installation. If you’re planning to develop for
the code, or if you want to stay on the bleeding edge, then you should perform a developer installation.

1.1 Basic Installation

There are two recommended approaches for a basic installation: conda-based, or pip-based. Using conda is much
easier, and will continue to be easier for anything else you install. However, the disadvantage is that you must put
your entire Python environment under conda. If you already have a highly customized Python environment, you
might prefer the pip install. But otherwise, we highly recommend installing conda, either using the full Ananconda
distribution or the smaller-footprint miniconda. Once conda is installed and in your path, installation is as simple as:

conda install -c conda-forge contact_map

which tells conda to get contact_map from the conda-forge channel, which manages our conda-based installa-
tion recipe.

If you would prefer to use pip, that takes a few extra steps, but will work on any Python setup (conda or not). Be-
cause of some weirdness in how pip handles packages (such as MDTraj) that have a particular types of requirements
from Numpy, you should install Cython and Numpy separately, so the whole install is:

pip install cython
pip install numpy
pip install contact_map

If you already have Numpy installed, you may need to re-install it with pip install -U
--force-reinstall numpy. Note that some systems may require you to preface pip install com-
mands with sudo (depending on where Python keeps its packages).

3

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://conda.io/miniconda.html
https://conda-forge.org/

contact_map Documentation, Release 0.3.1

1.2 Developer installation

If you plan to work with the source, or if you want to stay on the bleeding edge, you can install a version so that
your downloaded/cloned version of this git repository is the live code your Python interpreter sees. We call that a
“developer installation.”

This is a three-step process:

1. Download or clone the repository. If you plan to contribute changes back to the repository, please fork it on
GitHub and then clone your fork. Otherwise, you can download or clone the main repository. You can follow
GitHub’s instructions on how to do this, and apply those steps to forking our repository at http://github.com/
dwhswenson/contact_map.

2. Install the requirements. This can be done using either pip or conda. First, change into the directory for
the repository. You should see setup.py and requirements.txt (among many other things) in that
directory. Using conda:

conda install -y --file requirements.txt

Or, using pip:

pip install cython
pip install numpy
pip install -r requirements.txt

In some cases, you may need to add -U --force-reinstall to the Numpy step.

3. Install the package. Whether you get the requirements with pip or with conda, you can install the package
(again, from the directory containing setup.py) with:

pip install -e .

The -e means that the installation is “editable” (developer version; the stuff in this directory will be the live
code your Python interpreted uses) and the . tells it to find setup.py in the current directory.

1.3 Testing your installation

However you have installed it, you should test that your installation works. To do so, first check that the new package
can be imported. This can be done with

python -c "import contact_map"

If your Python interpreter can find the newly-installed package, that should exit without complaint.

For a more thorough check that everything works, you should run our test suite. This can be done by installing
pytest (using either pip or conda) and then running the command:

py.test --pyargs contact_map -v

This will run the tests on the installed version of contact_map. All tests should either pass or skip.

4 Chapter 1. Installation

https://help.github.com/articles/fork-a-repo/
http://github.com/dwhswenson/contact_map
http://github.com/dwhswenson/contact_map

CHAPTER 2

Examples

So far, we only have one major example. We will add others here as they are written.

2.1 Contact Maps

The contact_map package includes some tricks to study contact maps in protein dynamics, based on tools in
MDTraj. This notebook shows examples and serves as documentation.

As an example, we’ll use part of a trajectory of the KRas protein bound to GTP, which was provided by Sander Roet.
KRas is a protein that plays a role in many cancers. For simplicity, the waters were removed from the trajectory
(although ions are still included). To run this notebook, download the example files from https://figshare.com/s/
453b1b215cf2f9270769 (total download size about 1.2 MB). Download all files, and extract in the same directory that
you started Jupyer from (so that you have a directory called 5550217 in your current working directory).

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import mdtraj as md
traj = md.load("5550217/kras.xtc", top="5550217/kras.pdb")
topology = traj.topology

[2]: from contact_map import ContactMap, ContactFrequency, ContactDifference

2.1.1 Look at a single frame: ContactMap

First we make the contact map for the 0th frame. For default parameters (and how to change them) see section
“Changing the defaults” below.

[3]: %%time
frame_contacts = ContactMap(traj[0])

CPU times: user 137 ms, sys: 6.93 ms, total: 144 ms
Wall time: 145 ms

5

https://figshare.com/s/453b1b215cf2f9270769
https://figshare.com/s/453b1b215cf2f9270769

contact_map Documentation, Release 0.3.1

The built-in plotter requires one of the matplotlib color maps the set the color scheme. If you select a divergent color
map (useful if you want to look at contact differences), then you should give the parameters vmin=-1, and vmax=1.
Otherwise, you should use vmin=0 and vmax=1.

[4]: %%time
(fig, ax) = frame_contacts.residue_contacts.plot(cmap='seismic', vmin=-1, vmax=1)
plt.xlabel("Residue")
plt.ylabel("Residue")

CPU times: user 1.09 s, sys: 34.6 ms, total: 1.13 s
Wall time: 1.15 s

The plotting function return the matplotlib Figure and Axes objects, which allow you to make more manipu-
lations to them later. I’ll show an example of that in the “Changing the defaults” section.

We can also plot the atom-atom contacts, although it takes a little time. The built-in plotting function is best if there
are not many contacts (if the matrix is sparse). If there are lots of contacts, sometimes other approaches can plot more
quickly. See an example in the “Changing the defaults” section.

[5]: %%time
frame_contacts.atom_contacts.plot(cmap='seismic', vmin=-1, vmax=1);

CPU times: user 5.46 s, sys: 102 ms, total: 5.56 s
Wall time: 5.6 s

[5]: (<matplotlib.figure.Figure at 0x107e40150>,
<matplotlib.axes._subplots.AxesSubplot at 0x107def150>)

6 Chapter 2. Examples

https://matplotlib.org/users/colormaps.html

contact_map Documentation, Release 0.3.1

You’ll notice that you don’t see many points here. That is because the points are typically smaller than a single pixel at
this resolution. To fix that, increase the figure’s size or dpi. (Future updates to contact_map may provide an option
to require that each point be at least one pixel in size)

2.1.2 Look at a trajectory: ContactFrequency

ContactFrequency finds the fraction of frames where each contact exists.

[6]: %%time
trajectory_contacts = ContactFrequency(traj)

CPU times: user 6.02 s, sys: 28 ms, total: 6.05 s
Wall time: 6.08 s

[7]: # if you want to save this for later analysis
trajectory_contacts.save_to_file("traj_contacts.p")
then load with ContactFrequency.from_file("traj_contacts.p")

[8]: %%time
fig, ax = trajectory_contacts.residue_contacts.plot(cmap='seismic', vmin=-1, vmax=1);

CPU times: user 3.25 s, sys: 43.1 ms, total: 3.3 s
Wall time: 3.32 s

2.1. Contact Maps 7

contact_map Documentation, Release 0.3.1

2.1.3 Compare two: ContactDifference

If you want to compare two frequencies, you can use the ContactDifference class (or the shortcut for it, which
is to subtract a contact frequency/map from another.)

The example below will compare the trajectory to its first frame.

[9]: %%time
diff = trajectory_contacts - frame_contacts

CPU times: user 14.2 ms, sys: 4.48 ms, total: 18.7 ms
Wall time: 14.8 ms

A contact that appears in trajectory, but not in the frame, will be at +1 and will be shown in red below. A contact that
appears in the frame, but not the trajectory, will be at -1 and will be shown in blue below. The values are the difference
in the frequencies (of course, for a single frame, the frequency is always 0 or 1).

[10]: %%time
diff.residue_contacts.plot(cmap='seismic', vmin=-1, vmax=1);

CPU times: user 3.3 s, sys: 49.9 ms, total: 3.35 s
Wall time: 3.36 s

[10]: (<matplotlib.figure.Figure at 0x10b0ec990>,
<matplotlib.axes._subplots.AxesSubplot at 0x10bdcab50>)

8 Chapter 2. Examples

contact_map Documentation, Release 0.3.1

You could have created the same object with:

diff = ContactDifference(trajectory_contact, frame_contacts)

but the simple notation using - is much more straightforward. However, note that ContactDifference makes a
difference between the frequencies in the two objects, not the absolute count. Otherwise the trajectory would swamp
the single frame, and there would be no blue in that picture!

List the residue contacts that show the most difference

First we look at the contacts that are much more important in the trajectory than the frame. Then we look at the
contacts that are more important in the frame than the trajectory.

The .most_common() method gives a list of the contact pairs and the frequency, sorted by frequency. See also
collections.Counter.most_common() in the standard Python collections module.

Here we do this with the ContactDifference we created, although it works the same for ContactFrequency
and ContactMap (with the single-frame contact map, the ordering is a bit nonsensical, since every entry is either 0
or 1).

[11]: %%time
residue contact more important in trajectory than in frame (near +1)
diff.residue_contacts.most_common()[:10]

CPU times: user 7.53 ms, sys: 1.97 ms, total: 9.5 ms
Wall time: 8.1 ms

[11]: [([ALA146, GLN22], 0.9900990099009901),
([PHE82, PHE141], 0.9801980198019802),
([ALA83, LYS117], 0.9702970297029703),
([ILE84, GLU143], 0.9702970297029703),
([PHE90, ALA130], 0.9702970297029703),
([ALA146, ASN116], 0.9702970297029703),
([ALA155, VAL152], 0.9504950495049505),
([LEU113, ILE139], 0.9504950495049505),
([LEU19, LEU79], 0.9405940594059405),
([VAL81, ILE93], 0.9405940594059405)]

2.1. Contact Maps 9

contact_map Documentation, Release 0.3.1

[12]: # residue contact more important in frame than in trajectory (near -1)
list(reversed(diff.residue_contacts.most_common()))[:10]
alternate: diff.residue_contacts.most_common()[:-10:-1] # (thanks Sander!)

[12]: [([NA6828, THR87], -0.9900990099009901),
([CL6849, NA6842], -0.9900990099009901),
([NA6834, SER39], -0.9900990099009901),
([PRO34, ASP38], -0.9900990099009901),
([ALA59, GLU37], -0.9900990099009901),
([GLN25, ASP30], -0.9900990099009901),
([NA6842, GLY13], -0.9900990099009901),
([CL6865, GLN43], -0.9900990099009901),
([TYR40, TYR32], -0.9900990099009901),
([SER65, GLU37], -0.9900990099009901)]

List the atoms contacts most common within a given residue contact

First let’s select a few residues from the topology. Note that GTP has residue ID 201 in the PDB sequence, even
though it is only residue 166 (counting from 0) in the topology. This is because some of the protein was removed, and
therefore the PDB is missing those residues. The topology only counts the residues that are actually present.

[13]: val81 = topology.residue(80)
asn116 = topology.residue(115)
gtp201 = topology.residue(166)
print val81, asn116, gtp201

VAL81 ASN116 GTP201

We extended the standard .most_common() to take an optional argument. When the argument is given, it will filter
the output to only include the ones where that argument is part of the contact. For example, the following gives the
residues most commonly in contact with GTP.

[14]: for contact in trajectory_contacts.residue_contacts.most_common(gtp201):
if contact[1] > 0.1:

print contact

([GTP201, LEU120], 0.6435643564356436)
([GTP201, ASP119], 0.6237623762376238)
([LYS147, GTP201], 0.6138613861386139)
([ALA146, GTP201], 0.594059405940594)
([SER145, GTP201], 0.594059405940594)
([LYS117, GTP201], 0.594059405940594)
([ASP33, GTP201], 0.5742574257425742)
([GLY12, GTP201], 0.5643564356435643)
([GLY13, GTP201], 0.5544554455445545)
([VAL14, GTP201], 0.5346534653465347)
([ALA11, GTP201], 0.5346534653465347)
([GTP201, GLY15], 0.5247524752475248)
([GTP201, LYS16], 0.5247524752475248)
([SER17, GTP201], 0.5247524752475248)
([ALA18, GTP201], 0.5247524752475248)
([ASN116, GTP201], 0.4752475247524752)
([ASP57, GTP201], 0.40594059405940597)
([GTP201, GLU63], 0.39603960396039606)
([GLU37, GTP201], 0.3465346534653465)
([VAL29, GTP201], 0.297029702970297)
([NA6833, GTP201], 0.2079207920792079)

(continues on next page)

10 Chapter 2. Examples

contact_map Documentation, Release 0.3.1

(continued from previous page)

([NA6843, GTP201], 0.18811881188118812)
([THR35, GTP201], 0.1485148514851485)
([PRO34, GTP201], 0.1485148514851485)
([NA6829, GTP201], 0.1485148514851485)

We can also find all the atoms, for all residue contacts, that are in contact with a given residue, and return that sorted
by frequency.

[15]: diff.most_common_atoms_for_residue(gtp201)[:15]

[15]: [([GTP201-C6, LYS117-CB], 0.5346534653465347),
([LYS117-CA, GTP201-O6], 0.5247524752475248),
([GTP201-C6, LYS117-CA], 0.5247524752475248),
([GTP201-C8, GLY15-CA], 0.5148514851485149),
([GTP201-N7, GLY15-CA], 0.5148514851485149),
([GTP201-O2', ASP33-CG], 0.5148514851485149),
([GLY13-C, GTP201-PB], 0.49504950495049505),
([LYS117-N, GTP201-O6], 0.49504950495049505),
([GTP201-C2, LYS147-CB], 0.49504950495049505),
([GTP201-O3A, GLY13-C], 0.48514851485148514),
([GTP201-O2', ASP33-OD2], 0.48514851485148514),
([ASN116-OD1, GTP201-O6], 0.4752475247524752),
([ASN116-CG, GTP201-O6], 0.45544554455445546),
([GTP201-O6, LYS117-CB], 0.45544554455445546),
([GTP201-N7, ASN116-ND2], 0.45544554455445546)]

Finally, we can look at which atoms are most commonly in contact within a given residue contact pair.

[16]: trajectory_contacts.most_common_atoms_for_contact([val81, asn116])

[16]: [([ASN116-CB, VAL81-CG1], 0.9702970297029703),
([ASN116-CG, VAL81-CG1], 0.24752475247524752),
([VAL81-CG1, ASN116-ND2], 0.21782178217821782),
([VAL81-CG1, ASN116-N], 0.0594059405940594)]

2.1.4 Changing the defaults

This sections covers several options that you can modify to make the contact maps faster, and to focus on what you’re
most interested in.

The first three options change which atoms are included as possible contacts. We call these query and haystack,
and although they are conceptually equivalent, the algorithm is designed such that the query should have fewer atoms
than the haystack.

Both of these options take a list of atom index numbers. These are most easily created using MDTraj’s atom selection
language.

[17]: # the default selection is
default_selection = topology.select("not water and symbol != 'H'")
print len(default_selection)

1408

2.1. Contact Maps 11

contact_map Documentation, Release 0.3.1

Using a different query

[18]: switch1 = topology.select("resSeq 32 to 38 and symbol != 'H'")
switch2 = topology.select("resSeq 59 to 67 and symbol != 'H'")
gtp = topology.select("resname GTP and symbol != 'H'")
mg = topology.select("element Mg")
cations = topology.select("resname NA or resname MG")
sodium = topology.select("resname NA")

[19]: %%time
sw1_contacts = ContactFrequency(trajectory=traj, query=switch1)

CPU times: user 2.29 s, sys: 17.7 ms, total: 2.31 s
Wall time: 2.32 s

[20]: sw1_contacts.residue_contacts.plot(cmap='seismic', vmin=-1, vmax=1)

[20]: (<matplotlib.figure.Figure at 0x10d098a50>,
<matplotlib.axes._subplots.AxesSubplot at 0x107c20590>)

Using a different haystack

Currently, changing the haystack has essentially no effect on the performance. However, I expect to change that in the
future (requires making some modifications to MDTraj).

[21]: %%time
cations_switch1 = ContactFrequency(trajectory=traj, query=cations, haystack=switch1)

CPU times: user 2.11 s, sys: 9.41 ms, total: 2.12 s
Wall time: 2.13 s

[22]: (fig, ax) = cations_switch1.residue_contacts.plot(cmap='seismic', vmin=-1, vmax=1)

12 Chapter 2. Examples

contact_map Documentation, Release 0.3.1

Let’s zoom in on that. To do this, we’ll do a little MDTraj magic so that we can change the atom ID numbers, which
are what go into our cations and switch1 objects, into residue ID numbers (and we’ll use Python sets to remove
repeats):

[23]: def residue_for_atoms(atom_list, topology):
return set([topology.atom(a).residue.index for a in atom_list])

[24]: switch1_residues = residue_for_atoms(switch1, traj.topology)
cation_residues = residue_for_atoms(cations, traj.topology)

Now we’ll plot again, but we’ll change the x and y axes so that we only see switch 1 along x and cations along y:

[25]: (fig, ax) = cations_switch1.residue_contacts.plot(cmap='seismic', vmin=-1, vmax=1)
ax.set_xlim(min(switch1_residues), max(switch1_residues) + 1)
ax.set_ylim(min(cation_residues), max(cation_residues) + 1)

[25]: (167, 198)

Here, of course, the boxes are much larger, and are long rectangles instead of squares. The box represents the residue
number that is to its left and under it. So the most significant contacts here are between residue 36 and the ion listed
as residue 167. Let’s see just how frequently that contact is made:

2.1. Contact Maps 13

contact_map Documentation, Release 0.3.1

[26]: print cations_switch1.residue_contacts.counter[frozenset([36, 167])]

0.485148514851

So about half the time. Now, which residue/ion are these? Remember, these indices start at 0, even though the tradition
in science (and the PDB) is to count from 1. Furthermore, the PDB residue numbers for the ions skip the section of
the protein that has been removed. But we can easily obtain the relevant residues:

[27]: print traj.topology.residue(36)
print traj.topology.residue(167)

GLU37
MG202

So this is a contact between the Glu37 and the magnesium ion (which is listed as residue 202 in the PDB).

Changing how many neighboring residues are ignored

By default, we ignore atoms from 2 residues on either side of the given residue (and in the same chain). This is
easily changed. However, even when you say to ignore no neighbors, you still ignore the residue’s interactions with
itself.

Note: for non-protein contacts, the chain is often poorly defined. In this example, the GTP and the Mg are listed
sequentially in residue order, and therefore they are considered “neighbors” and their contacts are ignored.

[28]: %%time
ignore_none = ContactFrequency(trajectory=traj, n_neighbors_ignored=0)

CPU times: user 9.58 s, sys: 82.9 ms, total: 9.66 s
Wall time: 9.77 s

[29]: ignore_none.residue_contacts.plot(cmap='seismic', vmin=-1, vmax=1);

Using a different cutoff

The size of the cutoff has a large effect on the performance. The default is (currently) 0.45nm.

14 Chapter 2. Examples

contact_map Documentation, Release 0.3.1

[30]: %%time
large_cutoff = ContactFrequency(trajectory=traj, cutoff=1.5)

CPU times: user 3min 41s, sys: 2.95 s, total: 3min 44s
Wall time: 3min 47s

The cost of the built-in plot function also depends strongly on the number of contacts that are made. It is designed to
work well for sparse matrices; as the matrix gets less sparse, other approaches may be better. Here’s an example:

[31]: %%time
large_cutoff.residue_contacts.plot(cmap='seismic', vmin=-1, vmax=1);

CPU times: user 35.7 s, sys: 1.51 s, total: 37.2 s
Wall time: 37.6 s

[31]: (<matplotlib.figure.Figure at 0x111f5fd10>,
<matplotlib.axes._subplots.AxesSubplot at 0x11206e990>)

[32]: %%time
import matplotlib
cmap = matplotlib.pyplot.get_cmap('seismic')
norm = matplotlib.colors.Normalize(vmin=-1, vmax=1)

plot = matplotlib.pyplot.pcolor(large_cutoff.residue_contacts.df, cmap='seismic',
→˓vmin=-1, vmax=1)
plot.cmap.set_under(cmap(norm(0)));

CPU times: user 1.5 s, sys: 35.9 ms, total: 1.54 s
Wall time: 1.54 s

2.1. Contact Maps 15

contact_map Documentation, Release 0.3.1

In this case, using the pandas.DataFrame representation (obtained using .df) is faster. On the other hand, try
using this approach on the atom-atom picture at the top! That will take a while.

You’ll notice that these may not be pixel-perfect copies. This is because the number of pixels doesn’t evenly divide
into the number of residues. You can improve this by increasing the resolution (dpi in matplotlib) or the figure size.
However, in both versions you can see the overall structure quite clearly. In addition, the color bar is only shown in
the built-in version.

[]:

2.2 Parallel ContactFrequency with Dask

In principle, each frame that makes up a ContactFrequency can have its contact map calculated in parallel. This
shows how to use dask.distributed to do this.

This will use the same example data as the main contact maps example (data from https://figshare.com/s/
453b1b215cf2f9270769). See that example, contact_map.ipynb, for details.

[1]: %matplotlib inline
dask and distributed are extra installs
from dask.distributed import Client, LocalCluster
import contact_map

First we need to connect a client to a dask network.

Note that there are several ways to set up the dask computer network and then connect a client to it. See https:
//distributed.readthedocs.io/en/latest/setup.html. The approach used here creates a LocalCluster. Large scale
simulations would need other approaches. For clusters, you can manually run a dask-scheduler and multiple
dask-worker commands. By using the same sched.json, it is easy to have different workers in different jobs
on the cluster’s scheduling system.

[2]: c = LocalCluster()
client = Client(c)

[3]: # if you started on a cluster and the scheduler file is called sched.json
#client = Client(scheduler_file="./sched.json")

16 Chapter 2. Examples

https://distributed.readthedocs.io/
https://figshare.com/s/453b1b215cf2f9270769
https://figshare.com/s/453b1b215cf2f9270769
https://distributed.readthedocs.io/en/latest/setup.html
https://distributed.readthedocs.io/en/latest/setup.html

contact_map Documentation, Release 0.3.1

[4]: client

[4]: <Client: scheduler='tcp://127.0.0.1:61226' processes=4 cores=4>

[5]: %%time
freq = contact_map.DaskContactFrequency(

client=client,
filename="5550217/kras.xtc",
top="5550217/kras.pdb"

)
top must be given as keyword (passed along to mdtraj.load)

CPU times: user 954 ms, sys: 341 ms, total: 1.3 s
Wall time: 5.16 s

Note that on a single machine (shared memory) this may not improve performance. That is because the single-frame
aspect of this calculation is already parallelized with OpenMP, and will therefore use all cores on the machine.

Next we check that we’re still getting the same results:

[6]: # did it add up to give us the right number of frames?
freq.n_frames

[6]: 101

[7]: # do we get a familiar-looking residue map?
fig, ax = freq.residue_contacts.plot()

[8]: # Something like this is supposed to shut down the workers and the scheduler
I get it to shut down workers, but not scheduler... and does it all with lots of
→˓warnings
#client.loop.add_callback(client.scheduler.retire_workers, close_workers=True)
#client.loop.add_callback(client.scheduler.terminate)
#client.run_on_scheduler(lambda dask_scheduler: dask_scheduler.loop.stop())

[]:

2.2. Parallel ContactFrequency with Dask 17

contact_map Documentation, Release 0.3.1

18 Chapter 2. Examples

CHAPTER 3

API Reference

3.1 Contact maps

ContactCount(counter, object_f, n_x, n_y) Return object when dealing with contacts (residue or
atom).

ContactMap(frame[, query, haystack, cutoff, . . .]) Contact map (atomic and residue) for a single frame.
ContactFrequency(trajectory[, query, . . .]) Contact frequency (atomic and residue) for a trajectory.
ContactDifference(positive, negative) Contact map comparison (atomic and residue).

3.1.1 contact_map.ContactCount

class contact_map.ContactCount(counter, object_f, n_x, n_y)
Return object when dealing with contacts (residue or atom).

This contains all the information about the contacts of a given type. This information can be represented several
ways. One is as a list of contact pairs, each associated with the fraction of time the contact occurs. Another is
as a matrix, where the rows and columns label the pair number, and the value is the fraction of time. This class
provides several methods to get different representations of this data for further analysis.

In general, instances of this class shouldn’t be created by a user using __init__; instead, they will be returned
by other methods. So users will often need to use this object for analysis.

Parameters

• counter (collections.Counter) – the counter describing the count of how often the
contact occurred; key is a frozenset of a pair of numbers (identifying the atoms/residues);
value is the raw count of the number of times it occurred

• object_f (callable) – method to obtain the object associated with the number used
in counter; typically mdtraj.Topology.residue() or mdtraj.Topology.
atom().

• n_x (int) – number of objects in the x direction (used in plotting)

19

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/functions.html#int

contact_map Documentation, Release 0.3.1

• n_y (int) – number of objects in the y direction (used in plotting)

__init__(counter, object_f, n_x, n_y)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(counter, object_f, n_x, n_y) Initialize self.
most_common([obj]) Most common values (ordered) with object as keys.
most_common_idx() Most common values (ordered) with indices as keys.
plot([cmap, vmin, vmax, with_colorbar]) Plot contact matrix (requires matplotlib)

Attributes

counter keys use index number; count is contact occurrences
df DataFrame representation of the contact matrix
sparse_matrix sparse matrix representation of contacts

counter
keys use index number; count is contact occurrences

Type collections.Counter

df
DataFrame representation of the contact matrix

Rows/columns correspond to indices and the values correspond to the count

Type pandas.SparseDataFrame

most_common(obj=None)
Most common values (ordered) with object as keys.

This uses the objects for the contact pair (typically MDTraj Atom or Residue objects), instead of nu-
meric indices. This is more readable and can be easily used for further manipulation.

Parameters obj (MDTraj Atom or Residue) – if given, the return value only has entries
including this object (allowing one to, for example, get the most common contacts with a
specific residue)

Returns the most common contacts in order. If the list is l, then each element l[e] is a
tuple with two parts: l[e][0] is the key, which is a pair of Atom or Residue objects, and
l[e][1] is the count of how often that contact occurred.

Return type list

See also:

most_common_idx() same thing, using index numbers as key

most_common_idx()
Most common values (ordered) with indices as keys.

Returns the most common contacts in order. The if the list is l, then each element l[e]
consists of two parts: l[e][0] is a pair of integers, representing the indices of the objects
associated with the contact, and l[e][1] is the count of how often that contact occurred

20 Chapter 3. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/stdtypes.html#list

contact_map Documentation, Release 0.3.1

Return type list

See also:

most_common() same thing, using objects as key

plot(cmap=’seismic’, vmin=-1.0, vmax=1.0, with_colorbar=True)
Plot contact matrix (requires matplotlib)

Parameters

• cmap (str) – color map name, default ‘seismic’

• vmin (float) – minimum value for color map interpolation; default -1.0

• vmax (float) – maximum value for color map interpolation; default 1.0

Returns

• fig (matplotlib.Figure) – matplotlib figure object for this plot

• ax (matplotlib.Axes) – matplotlib axes object for this plot

sparse_matrix
sparse matrix representation of contacts

Rows/columns correspond to indices and the values correspond to the count

Type scipy.sparse.dok.dok_matrix

3.1.2 contact_map.ContactMap

class contact_map.ContactMap(frame, query=None, haystack=None, cutoff=0.45,
n_neighbors_ignored=2)

Contact map (atomic and residue) for a single frame.

__init__(frame, query=None, haystack=None, cutoff=0.45, n_neighbors_ignored=2)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(frame[, query, haystack, cutoff, . . .]) Initialize self.
contact_map(trajectory, frame_number, . . .) Returns atom and residue contact maps for the given

frame.
from_dict(dct) Create object from dict.
from_file(filename) Load this object from a given file
from_json(json_string) Create object from JSON string
most_common_atoms_for_contact(contact_pair)Most common atom contacts for a given residue con-

tact pair
most_common_atoms_for_residue(residue) Most common atom contact pairs for contacts with

the given residue
save_to_file(filename[, mode]) Save this object to the given file.
to_dict() Convert object to a dict.
to_json() JSON-serialized version of this object.

3.1. Contact maps 21

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

contact_map Documentation, Release 0.3.1

Attributes

atom_contacts
cutoff cutoff distance for contacts, in nanometers
haystack indices of atoms to include as haystack
n_neighbors_ignored number of neighbor residues (in same chain) to ig-

nore
query indices of atoms to include as query
residue_contacts
residue_ignore_atom_idxs maps query residue index to atom indices to ignore
residue_query_atom_idxs maps query residue index to atom indices in query
topology topology object for this system

contact_map(trajectory, frame_number, residue_query_atom_idxs, residue_ignore_atom_idxs)
Returns atom and residue contact maps for the given frame.

Parameters

• frame (mdtraj.Trajectory) – the desired frame (uses the first frame in this trajec-
tory)

• residue_query_atom_idxs (dict) –

• residue_ignore_atom_idxs (dict) –

Returns

• atom_contacts (collections.Counter)

• residue_contact (collections.Counter)

cutoff
cutoff distance for contacts, in nanometers

Type float

classmethod from_dict(dct)
Create object from dict.

Parameters dct (dict) – dict-formatted serialization (see to_dict for details)

See also:

to_dict()

classmethod from_file(filename)
Load this object from a given file

Parameters filename (string) – the file to read from

Returns the reloaded object

Return type ContactObject

See also:

save_to_file() save to a file

classmethod from_json(json_string)
Create object from JSON string

Parameters json_string (str) – JSON-serialized version of the object

22 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

contact_map Documentation, Release 0.3.1

See also:

to_json()

haystack
indices of atoms to include as haystack

Type list of int

most_common_atoms_for_contact(contact_pair)
Most common atom contacts for a given residue contact pair

Parameters contact_pair (length 2 list of Residue or int) – the residue
contact pair for which the most common atom contact pairs will be calculated

Returns Atom contact pairs for the residue contact pair, in order of frequency. Referring to the
list as l, each element of the list l[e] consists of two parts: l[e][0] is a list containing
the two MDTraj Atom objects that make up the contact, and l[e][1] is the measure of
how often the contact occurs.

Return type list

most_common_atoms_for_residue(residue)
Most common atom contact pairs for contacts with the given residue

Parameters residue (Residue or int) – the Residue object or index representing the
residue for which the most common atom contact pairs will be calculated

Returns Atom contact pairs involving given residue, order of frequency. Referring to the list as
l, each element of the list l[e] consists of two parts: l[e][0] is a list containing the two
MDTraj Atom objects that make up the contact, and l[e][1] is the measure of how often
the contact occurs.

Return type list

n_neighbors_ignored
number of neighbor residues (in same chain) to ignore

Type int

query
indices of atoms to include as query

Type list of int

residue_ignore_atom_idxs
maps query residue index to atom indices to ignore

Type dict

residue_query_atom_idxs
maps query residue index to atom indices in query

Type dict

save_to_file(filename, mode=’w’)
Save this object to the given file.

Parameters

• filename (string) – the file to write to

• mode ('w' or 'a') – file writing mode. Use ‘w’ to overwrite, ‘a’ to append. Note that
writing by bytes (‘b’ flag) is automatically added.

See also:

3.1. Contact maps 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

contact_map Documentation, Release 0.3.1

from_file() load from generated file

to_dict()
Convert object to a dict.

Keys should be strings; values should be (JSON-) serializable.

See also:

from_dict()

to_json()
JSON-serialized version of this object.

See also:

from_json()

topology
topology object for this system

The topology includes information about the atoms, how they are grouped into residues, and how the
residues are grouped into chains.

Type mdtraj.Topology

3.1.3 contact_map.ContactFrequency

class contact_map.ContactFrequency(trajectory, query=None, haystack=None, cutoff=0.45,
n_neighbors_ignored=2, frames=None)

Contact frequency (atomic and residue) for a trajectory.

The contact frequency is defined as fraction of the trajectory that a certain contact is made. This object calculates
this quantity for all contacts with atoms in the query residue, with “contact” defined as being within a certain
cutoff distance.

Parameters

• trajectory (mdtraj.Trajectory) – Trajectory (segment) to analyze

• query (list of int) – Indices of the atoms to be included as query. Default None
means all atoms.

• haystack (list of int) – Indices of the atoms to be included as haystack. Default
None means all atoms.

• cutoff (float) – Cutoff distance for contacts, in nanometers. Default 0.45.

• n_neighbors_ignored (int) – Number of neighboring residues (in the same chain)
to ignore. Default 2.

__init__(trajectory, query=None, haystack=None, cutoff=0.45, n_neighbors_ignored=2,
frames=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(trajectory[, query, haystack, . . .]) Initialize self.
add_contact_frequency(other) Add results from other to the internal counter.

Continued on next page

24 Chapter 3. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

contact_map Documentation, Release 0.3.1

Table 6 – continued from previous page
contact_map(trajectory, frame_number, . . .) Returns atom and residue contact maps for the given

frame.
from_dict(dct) Create object from dict.
from_file(filename) Load this object from a given file
from_json(json_string) Create object from JSON string
most_common_atoms_for_contact(contact_pair)Most common atom contacts for a given residue con-

tact pair
most_common_atoms_for_residue(residue) Most common atom contact pairs for contacts with

the given residue
save_to_file(filename[, mode]) Save this object to the given file.
subtract_contact_frequency(other) Subtracts results from other from internal counter.
to_dict() Convert object to a dict.
to_json() JSON-serialized version of this object.

Attributes

atom_contacts Atoms pairs mapped to fraction of trajectory with
that contact

cutoff cutoff distance for contacts, in nanometers
haystack indices of atoms to include as haystack
n_frames Number of frames in the mapped trajectory
n_neighbors_ignored number of neighbor residues (in same chain) to ig-

nore
query indices of atoms to include as query
residue_contacts Residue pairs mapped to fraction of trajectory with

that contact
residue_ignore_atom_idxs maps query residue index to atom indices to ignore
residue_query_atom_idxs maps query residue index to atom indices in query
topology topology object for this system

add_contact_frequency(other)
Add results from other to the internal counter.

Parameters other (ContactFrequency) – contact frequency made from the frames to
remove from this contact frequency

atom_contacts
Atoms pairs mapped to fraction of trajectory with that contact

contact_map(trajectory, frame_number, residue_query_atom_idxs, residue_ignore_atom_idxs)
Returns atom and residue contact maps for the given frame.

Parameters

• frame (mdtraj.Trajectory) – the desired frame (uses the first frame in this trajec-
tory)

• residue_query_atom_idxs (dict) –

• residue_ignore_atom_idxs (dict) –

Returns

• atom_contacts (collections.Counter)

• residue_contact (collections.Counter)

3.1. Contact maps 25

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

contact_map Documentation, Release 0.3.1

cutoff
cutoff distance for contacts, in nanometers

Type float

classmethod from_dict(dct)
Create object from dict.

Parameters dct (dict) – dict-formatted serialization (see to_dict for details)

See also:

to_dict()

classmethod from_file(filename)
Load this object from a given file

Parameters filename (string) – the file to read from

Returns the reloaded object

Return type ContactObject

See also:

save_to_file() save to a file

classmethod from_json(json_string)
Create object from JSON string

Parameters json_string (str) – JSON-serialized version of the object

See also:

to_json()

haystack
indices of atoms to include as haystack

Type list of int

most_common_atoms_for_contact(contact_pair)
Most common atom contacts for a given residue contact pair

Parameters contact_pair (length 2 list of Residue or int) – the residue
contact pair for which the most common atom contact pairs will be calculated

Returns Atom contact pairs for the residue contact pair, in order of frequency. Referring to the
list as l, each element of the list l[e] consists of two parts: l[e][0] is a list containing
the two MDTraj Atom objects that make up the contact, and l[e][1] is the measure of
how often the contact occurs.

Return type list

most_common_atoms_for_residue(residue)
Most common atom contact pairs for contacts with the given residue

Parameters residue (Residue or int) – the Residue object or index representing the
residue for which the most common atom contact pairs will be calculated

Returns Atom contact pairs involving given residue, order of frequency. Referring to the list as
l, each element of the list l[e] consists of two parts: l[e][0] is a list containing the two
MDTraj Atom objects that make up the contact, and l[e][1] is the measure of how often
the contact occurs.

26 Chapter 3. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

contact_map Documentation, Release 0.3.1

Return type list

n_frames
Number of frames in the mapped trajectory

n_neighbors_ignored
number of neighbor residues (in same chain) to ignore

Type int

query
indices of atoms to include as query

Type list of int

residue_contacts
Residue pairs mapped to fraction of trajectory with that contact

residue_ignore_atom_idxs
maps query residue index to atom indices to ignore

Type dict

residue_query_atom_idxs
maps query residue index to atom indices in query

Type dict

save_to_file(filename, mode=’w’)
Save this object to the given file.

Parameters

• filename (string) – the file to write to

• mode ('w' or 'a') – file writing mode. Use ‘w’ to overwrite, ‘a’ to append. Note that
writing by bytes (‘b’ flag) is automatically added.

See also:

from_file() load from generated file

subtract_contact_frequency(other)
Subtracts results from other from internal counter.

Note that this is intended for the case that you’re removing a subtrajectory of the already-calculated trajec-
tory. If you want to compare two different contact frequency maps, use ContactDifference.

Parameters other (ContactFrequency) – contact frequency made from the frames to
remove from this contact frequency

to_dict()
Convert object to a dict.

Keys should be strings; values should be (JSON-) serializable.

See also:

from_dict()

to_json()
JSON-serialized version of this object.

See also:

from_json()

3.1. Contact maps 27

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

contact_map Documentation, Release 0.3.1

topology
topology object for this system

The topology includes information about the atoms, how they are grouped into residues, and how the
residues are grouped into chains.

Type mdtraj.Topology

3.1.4 contact_map.ContactDifference

class contact_map.ContactDifference(positive, negative)
Contact map comparison (atomic and residue).

This can compare single frames or entire trajectories (or even mix the two!) While this can be directly instan-
tiated by the user, the more common way to make this object is by using the - operator, i.e., diff = map_1
- map_2.

__init__(positive, negative)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(positive, negative) Initialize self.
contact_map(*args, **kwargs) Returns atom and residue contact maps for the given

frame.
from_dict(dct) Create object from dict.
from_file(filename) Load this object from a given file
from_json(json_string) Create object from JSON string
most_common_atoms_for_contact(contact_pair)Most common atom contacts for a given residue con-

tact pair
most_common_atoms_for_residue(residue) Most common atom contact pairs for contacts with

the given residue
save_to_file(filename[, mode]) Save this object to the given file.
to_dict() Convert object to a dict.
to_json() JSON-serialized version of this object.

Attributes

atom_contacts
cutoff cutoff distance for contacts, in nanometers
haystack indices of atoms to include as haystack
n_neighbors_ignored number of neighbor residues (in same chain) to ig-

nore
query indices of atoms to include as query
residue_contacts
residue_ignore_atom_idxs maps query residue index to atom indices to ignore
residue_query_atom_idxs maps query residue index to atom indices in query
topology topology object for this system

contact_map(*args, **kwargs)
Returns atom and residue contact maps for the given frame.

28 Chapter 3. API Reference

contact_map Documentation, Release 0.3.1

Parameters

• frame (mdtraj.Trajectory) – the desired frame (uses the first frame in this trajec-
tory)

• residue_query_atom_idxs (dict) –

• residue_ignore_atom_idxs (dict) –

Returns

• atom_contacts (collections.Counter)

• residue_contact (collections.Counter)

cutoff
cutoff distance for contacts, in nanometers

Type float

classmethod from_dict(dct)
Create object from dict.

Parameters dct (dict) – dict-formatted serialization (see to_dict for details)

See also:

to_dict()

classmethod from_file(filename)
Load this object from a given file

Parameters filename (string) – the file to read from

Returns the reloaded object

Return type ContactObject

See also:

save_to_file() save to a file

classmethod from_json(json_string)
Create object from JSON string

Parameters json_string (str) – JSON-serialized version of the object

See also:

to_json()

haystack
indices of atoms to include as haystack

Type list of int

most_common_atoms_for_contact(contact_pair)
Most common atom contacts for a given residue contact pair

Parameters contact_pair (length 2 list of Residue or int) – the residue
contact pair for which the most common atom contact pairs will be calculated

Returns Atom contact pairs for the residue contact pair, in order of frequency. Referring to the
list as l, each element of the list l[e] consists of two parts: l[e][0] is a list containing
the two MDTraj Atom objects that make up the contact, and l[e][1] is the measure of
how often the contact occurs.

3.1. Contact maps 29

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

contact_map Documentation, Release 0.3.1

Return type list

most_common_atoms_for_residue(residue)
Most common atom contact pairs for contacts with the given residue

Parameters residue (Residue or int) – the Residue object or index representing the
residue for which the most common atom contact pairs will be calculated

Returns Atom contact pairs involving given residue, order of frequency. Referring to the list as
l, each element of the list l[e] consists of two parts: l[e][0] is a list containing the two
MDTraj Atom objects that make up the contact, and l[e][1] is the measure of how often
the contact occurs.

Return type list

n_neighbors_ignored
number of neighbor residues (in same chain) to ignore

Type int

query
indices of atoms to include as query

Type list of int

residue_ignore_atom_idxs
maps query residue index to atom indices to ignore

Type dict

residue_query_atom_idxs
maps query residue index to atom indices in query

Type dict

save_to_file(filename, mode=’w’)
Save this object to the given file.

Parameters

• filename (string) – the file to write to

• mode ('w' or 'a') – file writing mode. Use ‘w’ to overwrite, ‘a’ to append. Note that
writing by bytes (‘b’ flag) is automatically added.

See also:

from_file() load from generated file

to_dict()
Convert object to a dict.

Keys should be strings; values should be (JSON-) serializable.

See also:

from_dict()

to_json()
JSON-serialized version of this object.

See also:

from_json()

30 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

contact_map Documentation, Release 0.3.1

topology
topology object for this system

The topology includes information about the atoms, how they are grouped into residues, and how the
residues are grouped into chains.

Type mdtraj.Topology

3.2 Minimum Distance (and related)

MinimumDistanceCounter(trajectory, query, . . .) Count how often each atom pair is the minimum dis-
tance.

NearestAtoms(trajectory, cutoff[, . . .]) Identify nearest atoms (within a cutoff) to an atom.

3.2.1 contact_map.MinimumDistanceCounter

class contact_map.MinimumDistanceCounter(trajectory, query, haystack)
Count how often each atom pair is the minimum distance.

Parameters

• trajectory (mdtraj.Trajectory) – trajectory to be analyzed

• query (list) – list of the (integer) atom indices to use as the query

• haystack (list) – list of the (integer) atom indices to use as the haystack

topology
the topology object associated with the class

Type mdtraj.Topology

atom_pairs
list of 2-tuples representing atom index pairs to use when looking for the minimum distance

Type list

minimum_distances
the minimum distance between query group and haystack group at each frame of the trajectory

Type list

__init__(trajectory, query, haystack)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(trajectory, query, haystack) Initialize self.

Attributes

atom_count map from atom pair to the number of times that pair
is the minimum distance

Continued on next page

3.2. Minimum Distance (and related) 31

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

contact_map Documentation, Release 0.3.1

Table 12 – continued from previous page
atom_history list of atom pairs when represent the minimum dis-

tance at each frame of the trajectory
residue_count map from residue pair to the number of times that

pair is the minimum distance
residue_history list of residue pairs when represent the minimum dis-

tance at each frame of the trajectory

atom_count
map from atom pair to the number of times that pair is the minimum distance

Type collections.Counter

atom_history
list of atom pairs when represent the minimum distance at each frame of the trajectory

Type list of 2-tuples

residue_count
map from residue pair to the number of times that pair is the minimum distance

Type collections.Counter

residue_history
list of residue pairs when represent the minimum distance at each frame of the trajectory

Type list of 2-tuples

3.2.2 contact_map.NearestAtoms

class contact_map.NearestAtoms(trajectory, cutoff, frame_number=0, excluded=None)
Identify nearest atoms (within a cutoff) to an atom.

This was primarily written to quickly look for atoms that are nearly overlapping, but should be extendable to
have other uses.

Parameters

• trajectory (mdtraj.Trajectory) – trajectory to be analyzed

• cutoff (float) – cutoff distance (in nm)

• frame_number (int) – frame number within the trajectory (counting from 0), default 0

• excluded (dict) – a dict of {atom_index: [excluded_atom_indices]}, where the ex-
cluded atom indices are atoms that should not be counted when considering the atom for the
key atom_index. Default is None, which ignores all atoms in the same residue. Passing an
empty dict, {}, will result in all atom pairs being considered

nearest
dictionary mapping atom index to the atom index of the nearest atom to this one

Type dict

nearest_distance
dictionary mapping atom index to the distance to the nearest atom

Type dict

__init__(trajectory, cutoff, frame_number=0, excluded=None)
Initialize self. See help(type(self)) for accurate signature.

32 Chapter 3. API Reference

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

contact_map Documentation, Release 0.3.1

Methods

__init__(trajectory, cutoff[, frame_number, . . .]) Initialize self.

Attributes

sorted_distances 3-tuple (atom_index, nearest_atom_index, near-
est_distance) for each atom, sorted by distance.

sorted_distances
3-tuple (atom_index, nearest_atom_index, nearest_distance) for each atom, sorted by distance.

Type list

3.3 Parallelization of ContactFrequency

frequency_task Task-based implementation of ContactFrequency .
DaskContactFrequency(client, filename[, . . .]) Dask-based parallelization of contact frequency.

3.3.1 contact_map.frequency_task

Task-based implementation of ContactFrequency .

The overall algorithm is:

1. Identify how we’re going to slice up the trajectory into task-based chunks (block_slices(),
default_slices())

2. On each node

a. Load the trajectory segment (load_trajectory_task())

b. Run the analysis on the segment (map_task())

3. Once all the results have been collected, combine them (reduce_all_results())

Notes

Includes versions where messages are Python objects and versions (labelled with _json) where messages have been
JSON-serialized. However, we don’t yet have a solution for JSON serialization of MDTraj objects, so if JSON se-
rialization is the communication method, the loading of the trajectory and the calculation of the contacts must be
combined into a single task.

Functions

block_slices(n_total, n_per_block) Determine slices for splitting the input array.
default_slices(n_total, n_workers) Calculate default slices from number of workers.
load_trajectory_task(subslice, file_name, . . .) Task for loading file.
map_task(subtrajectory, parameters) Task to be mapped to all subtrajectories.

Continued on next page

3.3. Parallelization of ContactFrequency 33

https://docs.python.org/3/library/stdtypes.html#list

contact_map Documentation, Release 0.3.1

Table 16 – continued from previous page
map_task_json(subtrajectory, parameters) JSON-serialized version of map_task()
reduce_all_results(contacts) Combine multiple ContactFrequency objects into

one
reduce_all_results_json(results_of_map) JSON-serialized version of

reduce_all_results()

contact_map.frequency_task.block_slices(n_total, n_per_block)
Determine slices for splitting the input array.

Parameters

• n_total (int) – total length of array

• n_per_block (int) – maximum number of items per block

Returns slices to be applied to the array

Return type list of slice

contact_map.frequency_task.default_slices(n_total, n_workers)
Calculate default slices from number of workers.

Default behavior is (approximately) one task per worker.

Parameters

• n_total (int) – total number of items in array

• n_workers (int) – number of workers

Returns slices to be applied to the array

Return type list of slice

contact_map.frequency_task.load_trajectory_task(subslice, file_name, **kwargs)
Task for loading file. Reordered for to take per-task variable first.

Parameters

• subslice (slice) – the slice of the trajectory to use

• file_name (str) – trajectory file name

• kwargs – other parameters to mdtraj.load

Returns subtrajectory for this slice

Return type md.Trajectory

contact_map.frequency_task.map_task(subtrajectory, parameters)
Task to be mapped to all subtrajectories. Run ContactFrequency

Parameters

• subtrajectory (mdtraj.Trajectory) – single trajectory segment to calculate
ContactFrequency for

• parameters (dict) – kwargs-style dict for the ContactFrequency object

Returns contact frequency for the subtrajectory

Return type ContactFrequency

contact_map.frequency_task.map_task_json(subtrajectory, parameters)
JSON-serialized version of map_task()

34 Chapter 3. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

contact_map Documentation, Release 0.3.1

contact_map.frequency_task.reduce_all_results(contacts)
Combine multiple ContactFrequency objects into one

Parameters contacts (iterable of ContactFrequency) – the individual (partial) contact fre-
quencies

Returns total of all input contact frequencies (summing them)

Return type ContactFrequency

contact_map.frequency_task.reduce_all_results_json(results_of_map)
JSON-serialized version of reduce_all_results()

3.3.2 contact_map.DaskContactFrequency

class contact_map.DaskContactFrequency(client, filename, query=None, haystack=None, cut-
off=0.45, n_neighbors_ignored=2, **kwargs)

Dask-based parallelization of contact frequency.

The contact frequency is the fraction of a trajectory that a contact is made. See ContactFrequency for
details. This implementation parallelizes the contact frequency calculation using dask.distributed, which
must be installed separately to use this object.

Notes

The interface for this object closely mimics that of the ContactFrequency object, with the addition re-
quiring the dask.distributed.Client as input. However, there is one important difference. Whereas
ContactFrequency takes an mdtraj.Trajectory object as input, DaskContactFrequency takes
a file name, plus any extra kwargs that MDTraj needs to load the file.

Parameters

• client (dask.distributed.Client) – Client object connected to the dask net-
work.

• filename (str) – Name of the file where the trajectory is located. File must be accessible
by all workers in the dask network.

• query (list of int) – Indices of the atoms to be included as query. Default None
means all atoms.

• haystack (list of int) – Indices of the atoms to be included as haystack. Default
None means all atoms.

• cutoff (float) – Cutoff distance for contacts, in nanometers. Default 0.45.

• n_neighbors_ignored (int) – Number of neighboring residues (in the same chain)
to ignore. Default 2.

__init__(client, filename, query=None, haystack=None, cutoff=0.45, n_neighbors_ignored=2,
**kwargs)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(client, filename[, query, . . .]) Initialize self.
add_contact_frequency(other) Add results from other to the internal counter.

Continued on next page

3.3. Parallelization of ContactFrequency 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

contact_map Documentation, Release 0.3.1

Table 17 – continued from previous page
contact_map(trajectory, frame_number, . . .) Returns atom and residue contact maps for the given

frame.
from_dict(dct) Create object from dict.
from_file(filename) Load this object from a given file
from_json(json_string) Create object from JSON string
most_common_atoms_for_contact(contact_pair)Most common atom contacts for a given residue con-

tact pair
most_common_atoms_for_residue(residue) Most common atom contact pairs for contacts with

the given residue
save_to_file(filename[, mode]) Save this object to the given file.
subtract_contact_frequency(other) Subtracts results from other from internal counter.
to_dict() Convert object to a dict.
to_json() JSON-serialized version of this object.

Attributes

atom_contacts Atoms pairs mapped to fraction of trajectory with
that contact

cutoff cutoff distance for contacts, in nanometers
haystack indices of atoms to include as haystack
n_frames Number of frames in the mapped trajectory
n_neighbors_ignored number of neighbor residues (in same chain) to ig-

nore
parameters
query indices of atoms to include as query
residue_contacts Residue pairs mapped to fraction of trajectory with

that contact
residue_ignore_atom_idxs maps query residue index to atom indices to ignore
residue_query_atom_idxs maps query residue index to atom indices in query
run_info
topology topology object for this system

add_contact_frequency(other)
Add results from other to the internal counter.

Parameters other (ContactFrequency) – contact frequency made from the frames to
remove from this contact frequency

atom_contacts
Atoms pairs mapped to fraction of trajectory with that contact

contact_map(trajectory, frame_number, residue_query_atom_idxs, residue_ignore_atom_idxs)
Returns atom and residue contact maps for the given frame.

Parameters

• frame (mdtraj.Trajectory) – the desired frame (uses the first frame in this trajec-
tory)

• residue_query_atom_idxs (dict) –

• residue_ignore_atom_idxs (dict) –

Returns

36 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

contact_map Documentation, Release 0.3.1

• atom_contacts (collections.Counter)

• residue_contact (collections.Counter)

cutoff
cutoff distance for contacts, in nanometers

Type float

classmethod from_dict(dct)
Create object from dict.

Parameters dct (dict) – dict-formatted serialization (see to_dict for details)

See also:

to_dict()

classmethod from_file(filename)
Load this object from a given file

Parameters filename (string) – the file to read from

Returns the reloaded object

Return type ContactObject

See also:

save_to_file() save to a file

classmethod from_json(json_string)
Create object from JSON string

Parameters json_string (str) – JSON-serialized version of the object

See also:

to_json()

haystack
indices of atoms to include as haystack

Type list of int

most_common_atoms_for_contact(contact_pair)
Most common atom contacts for a given residue contact pair

Parameters contact_pair (length 2 list of Residue or int) – the residue
contact pair for which the most common atom contact pairs will be calculated

Returns Atom contact pairs for the residue contact pair, in order of frequency. Referring to the
list as l, each element of the list l[e] consists of two parts: l[e][0] is a list containing
the two MDTraj Atom objects that make up the contact, and l[e][1] is the measure of
how often the contact occurs.

Return type list

most_common_atoms_for_residue(residue)
Most common atom contact pairs for contacts with the given residue

Parameters residue (Residue or int) – the Residue object or index representing the
residue for which the most common atom contact pairs will be calculated

3.3. Parallelization of ContactFrequency 37

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

contact_map Documentation, Release 0.3.1

Returns Atom contact pairs involving given residue, order of frequency. Referring to the list as
l, each element of the list l[e] consists of two parts: l[e][0] is a list containing the two
MDTraj Atom objects that make up the contact, and l[e][1] is the measure of how often
the contact occurs.

Return type list

n_frames
Number of frames in the mapped trajectory

n_neighbors_ignored
number of neighbor residues (in same chain) to ignore

Type int

query
indices of atoms to include as query

Type list of int

residue_contacts
Residue pairs mapped to fraction of trajectory with that contact

residue_ignore_atom_idxs
maps query residue index to atom indices to ignore

Type dict

residue_query_atom_idxs
maps query residue index to atom indices in query

Type dict

save_to_file(filename, mode=’w’)
Save this object to the given file.

Parameters

• filename (string) – the file to write to

• mode ('w' or 'a') – file writing mode. Use ‘w’ to overwrite, ‘a’ to append. Note that
writing by bytes (‘b’ flag) is automatically added.

See also:

from_file() load from generated file

subtract_contact_frequency(other)
Subtracts results from other from internal counter.

Note that this is intended for the case that you’re removing a subtrajectory of the already-calculated trajec-
tory. If you want to compare two different contact frequency maps, use ContactDifference.

Parameters other (ContactFrequency) – contact frequency made from the frames to
remove from this contact frequency

to_dict()
Convert object to a dict.

Keys should be strings; values should be (JSON-) serializable.

See also:

from_dict()

38 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

contact_map Documentation, Release 0.3.1

to_json()
JSON-serialized version of this object.

See also:

from_json()

topology
topology object for this system

The topology includes information about the atoms, how they are grouped into residues, and how the
residues are grouped into chains.

Type mdtraj.Topology

3.4 API naming conventions

There are several terms that are used throughout the API which are not completely standard. Understanding them, and
how we use them, will make it much easier to understand the code.

Note: This section does not discuss the code style conventions we use, only the choice of specific words to mean
specific things outside the normal scientific usage. For the code style, see the (to-be-written) developer documentation
(or just use PEP8).

3.4.1 Query/Haystack

Many functions in the API take the lists query and haystack as input. This nomenclature follows usage in MDTraj.
These are lists of atom indices used in the contact search. Every pair will include one atom from query and one atom
from haystack. In principle, the two lists are interchangeable. However, there are cases where the implementation
will be faster if the query is the smaller of the two lists.

3.4.2 Index/idx

Most of our return values are in terms of MDTraj Atom and Residue objects. This is because these are more
readable, and provide the user with immediate access to useful context. However, there are times that what we really
want is the atom or residue index number. For this, we include the idx suffix (e.g., most_common_atoms_idx).
Note that these indices start from 0; this can be confusing when comparing to PDB entries where indexing is from 1.

3.4.3 Most common

Several methods begin with most_common. The behavior for this is inspired by the behavior of collections.
Counter.most_common(), which returns elements and there counts ordered from most to least. Note that, unlike
the original, we usually do not implement a way to only return the first n results (although this may be added later).

• genindex

contact_map is an open source project, released under the GNU LGPL, version 2.1 or (at your option) any later
version. Development takes place in public at https://github.com/dwhswenson/contact_map; your contributions would
be welcome!

If you have suggestions or bug reports, please raise an issue on our GitHub issues page.

3.4. API naming conventions 39

https://docs.python.org/3/library/collections.html#collections.Counter.most_common
https://docs.python.org/3/library/collections.html#collections.Counter.most_common
https://github.com/dwhswenson/contact_map
https://github.com/dwhswenson/contact_map/issues

contact_map Documentation, Release 0.3.1

40 Chapter 3. API Reference

Python Module Index

c
contact_map.frequency_task, 33

41

contact_map Documentation, Release 0.3.1

42 Python Module Index

Index

Symbols
__init__() (contact_map.ContactCount method), 20
__init__() (contact_map.ContactDifference

method), 28
__init__() (contact_map.ContactFrequency

method), 24
__init__() (contact_map.ContactMap method), 21
__init__() (contact_map.DaskContactFrequency

method), 35
__init__() (contact_map.MinimumDistanceCounter

method), 31
__init__() (contact_map.NearestAtoms method), 32

A
add_contact_frequency() (con-

tact_map.ContactFrequency method), 25
add_contact_frequency() (con-

tact_map.DaskContactFrequency method),
36

atom_contacts (contact_map.ContactFrequency at-
tribute), 25

atom_contacts (con-
tact_map.DaskContactFrequency attribute),
36

atom_count (contact_map.MinimumDistanceCounter
attribute), 32

atom_history (con-
tact_map.MinimumDistanceCounter attribute),
32

atom_pairs (contact_map.MinimumDistanceCounter
attribute), 31

B
block_slices() (in module con-

tact_map.frequency_task), 34

C
contact_map() (contact_map.ContactDifference

method), 28

contact_map() (contact_map.ContactFrequency
method), 25

contact_map() (contact_map.ContactMap method),
22

contact_map() (con-
tact_map.DaskContactFrequency method),
36

contact_map.frequency_task (module), 33
ContactCount (class in contact_map), 19
ContactDifference (class in contact_map), 28
ContactFrequency (class in contact_map), 24
ContactMap (class in contact_map), 21
counter (contact_map.ContactCount attribute), 20
cutoff (contact_map.ContactDifference attribute), 29
cutoff (contact_map.ContactFrequency attribute), 25
cutoff (contact_map.ContactMap attribute), 22
cutoff (contact_map.DaskContactFrequency at-

tribute), 37

D
DaskContactFrequency (class in contact_map), 35
default_slices() (in module con-

tact_map.frequency_task), 34
df (contact_map.ContactCount attribute), 20

F
from_dict() (contact_map.ContactDifference class

method), 29
from_dict() (contact_map.ContactFrequency class

method), 26
from_dict() (contact_map.ContactMap class

method), 22
from_dict() (contact_map.DaskContactFrequency

class method), 37
from_file() (contact_map.ContactDifference class

method), 29
from_file() (contact_map.ContactFrequency class

method), 26
from_file() (contact_map.ContactMap class

method), 22

43

contact_map Documentation, Release 0.3.1

from_file() (contact_map.DaskContactFrequency
class method), 37

from_json() (contact_map.ContactDifference class
method), 29

from_json() (contact_map.ContactFrequency class
method), 26

from_json() (contact_map.ContactMap class
method), 22

from_json() (contact_map.DaskContactFrequency
class method), 37

H
haystack (contact_map.ContactDifference attribute),

29
haystack (contact_map.ContactFrequency attribute),

26
haystack (contact_map.ContactMap attribute), 23
haystack (contact_map.DaskContactFrequency

attribute), 37

L
load_trajectory_task() (in module con-

tact_map.frequency_task), 34

M
map_task() (in module contact_map.frequency_task),

34
map_task_json() (in module con-

tact_map.frequency_task), 34
minimum_distances (con-

tact_map.MinimumDistanceCounter attribute),
31

MinimumDistanceCounter (class in contact_map),
31

most_common() (contact_map.ContactCount
method), 20

most_common_atoms_for_contact() (con-
tact_map.ContactDifference method), 29

most_common_atoms_for_contact() (con-
tact_map.ContactFrequency method), 26

most_common_atoms_for_contact() (con-
tact_map.ContactMap method), 23

most_common_atoms_for_contact() (con-
tact_map.DaskContactFrequency method),
37

most_common_atoms_for_residue() (con-
tact_map.ContactDifference method), 30

most_common_atoms_for_residue() (con-
tact_map.ContactFrequency method), 26

most_common_atoms_for_residue() (con-
tact_map.ContactMap method), 23

most_common_atoms_for_residue() (con-
tact_map.DaskContactFrequency method),
37

most_common_idx() (contact_map.ContactCount
method), 20

N
n_frames (contact_map.ContactFrequency attribute),

27
n_frames (contact_map.DaskContactFrequency

attribute), 38
n_neighbors_ignored (con-

tact_map.ContactDifference attribute), 30
n_neighbors_ignored (con-

tact_map.ContactFrequency attribute), 27
n_neighbors_ignored (contact_map.ContactMap

attribute), 23
n_neighbors_ignored (con-

tact_map.DaskContactFrequency attribute),
38

nearest (contact_map.NearestAtoms attribute), 32
nearest_distance (contact_map.NearestAtoms at-

tribute), 32
NearestAtoms (class in contact_map), 32

P
plot() (contact_map.ContactCount method), 21

Q
query (contact_map.ContactDifference attribute), 30
query (contact_map.ContactFrequency attribute), 27
query (contact_map.ContactMap attribute), 23
query (contact_map.DaskContactFrequency attribute),

38

R
reduce_all_results() (in module con-

tact_map.frequency_task), 34
reduce_all_results_json() (in module con-

tact_map.frequency_task), 35
residue_contacts (contact_map.ContactFrequency

attribute), 27
residue_contacts (con-

tact_map.DaskContactFrequency attribute),
38

residue_count (con-
tact_map.MinimumDistanceCounter attribute),
32

residue_history (con-
tact_map.MinimumDistanceCounter attribute),
32

residue_ignore_atom_idxs (con-
tact_map.ContactDifference attribute), 30

residue_ignore_atom_idxs (con-
tact_map.ContactFrequency attribute), 27

residue_ignore_atom_idxs (con-
tact_map.ContactMap attribute), 23

44 Index

contact_map Documentation, Release 0.3.1

residue_ignore_atom_idxs (con-
tact_map.DaskContactFrequency attribute),
38

residue_query_atom_idxs (con-
tact_map.ContactDifference attribute), 30

residue_query_atom_idxs (con-
tact_map.ContactFrequency attribute), 27

residue_query_atom_idxs (con-
tact_map.ContactMap attribute), 23

residue_query_atom_idxs (con-
tact_map.DaskContactFrequency attribute),
38

S
save_to_file() (contact_map.ContactDifference

method), 30
save_to_file() (contact_map.ContactFrequency

method), 27
save_to_file() (contact_map.ContactMap

method), 23
save_to_file() (con-

tact_map.DaskContactFrequency method),
38

sorted_distances (contact_map.NearestAtoms at-
tribute), 33

sparse_matrix (contact_map.ContactCount at-
tribute), 21

subtract_contact_frequency() (con-
tact_map.ContactFrequency method), 27

subtract_contact_frequency() (con-
tact_map.DaskContactFrequency method),
38

T
to_dict() (contact_map.ContactDifference method),

30
to_dict() (contact_map.ContactFrequency method),

27
to_dict() (contact_map.ContactMap method), 24
to_dict() (contact_map.DaskContactFrequency

method), 38
to_json() (contact_map.ContactDifference method),

30
to_json() (contact_map.ContactFrequency method),

27
to_json() (contact_map.ContactMap method), 24
to_json() (contact_map.DaskContactFrequency

method), 38
topology (contact_map.ContactDifference attribute),

30
topology (contact_map.ContactFrequency attribute),

27
topology (contact_map.ContactMap attribute), 24

topology (contact_map.DaskContactFrequency
attribute), 39

topology (contact_map.MinimumDistanceCounter at-
tribute), 31

Index 45

	Installation
	Examples
	API Reference
	Python Module Index

